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Cut-and-connect of two antiparallel vortex tubes 
By MOGENS V. MELANDERt AND FAZLE HUSSAINi 

Motivated by our early conjecture that vortex cut-and-connect plays a key role 
in mixing and production of turbulence, helicity and aerodynamic noise, we have 
studied the cross-linking of two antiparallel viscous vortex tubes via direct numerical 
simulation. The Navier-Stokes equations are solved by a dealiased pseudo-spectral 
method with 643 grid points in a periodic domain for initial Reynolds numbers Re 
(= r/v) up to 1000; r is the circulation and Y is the kinematic viscosity. The vortex 
tubes are given an initial sinusoidal perturbation to induce a collision and keep the 
two tubes pressed against each other as annihilation continues. Cross-sectional 
and wire plots of various properties depict three stages of evolution: (I) Inviscid 
induction causing vortex cores to first approach and form a contact zone with a 
dipole cross-section, and then to flatten and stretch. (11) Vorticity annihilation in 
the contact zone accompanied by bridging between the two vortices at both ends 
of the contact zone due to a collection of cross-linked vortex lines, now orthogonal 
to the initial vortex tubes. The direction of dipole advection in the contact zone 
reverses. (111) Threading of the remnants of the original vortices in between the 
bridges as they pull apart. We show the crucial stage 11 to be a simple consequence 
of vorticity annihilation in the contact zone, link-up of the un-annihilated parts of 
vortex lines, and stretching and advection by the vortex tube swirl of the cross- 
linked lines, which accumulate at stagnation points in front of the annihilating 
vortex dipole. W e  claim that bridging is the essence of any vorticity cross-linking 
and that annihilation is sustained by stretching of the dipole by the bridges. 

Induction by the bridges reverses the curvature of the dipole vortices and the 
direction of their motion. This reversal would arrest annihilation, were it not for the 
fact that the stretching by the bridges sustains annihilation, albeit at a slower rate. 
The bridges pull away from each other by self induction while the stretched remnants 
(Le. threads) of the initial vortex dipole decay. The threads decay very slowly both 
because of the balance between stretching and viscous diffusion, and because of 
the absence of induction pressing the threads against each other. Threading, in 
addition to bridging, is an integral part of reconnection contributing to mixing and 
enstrophy cascade. 

Vortex reconnection details are found to be insensitive to asymmetry. Modeling of 
the reconnection process is briefly examined. We also examine the 3D spatial details 
of scalar transport (at unity Schmidt number), enstrophy production, dissipation 
and helici t y. 
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1. Introduction 

Since turbulent flow can be viewed as a tangle of vortices, vortex dynamics is an 
attractive and tractable avenue for understanding fundamental turbulence mech- 
anisms. The discovery of large-scale organized vortical motions, popularly called 
"coherent structures" (CS), in flows which were heretofore regarded as fully random 
(Cantwell 1981; Lumley 1981; Kim & Moin 1986), has fostered the concept that CS 
dominate turbulence phenomena such as transports of heat, mass and momentum, 
combustion and chemical reaction, and generation of drag and aerodynamic noise, 
and that these phenomena can be managed by active and passive manipulation 
of CS formation and interactions (Hussain & Husain 1987). Vortex dynamics can 
be an effective tool in understanding CS topology and dynamics in unexcited and 
excited flows, especially in the absence of any theoretical framework for CS. 

Inviscid vortex dynamics is particularly suited for studying CS evolution and in- 
teraction as CS dynamics is essentially inviscid and we define CS in terms of vorticity 
(Hussain 1980, 1986). Inviscid vortex dynamics are governed by the conservation 
theorems of Kelvin and Helmholtz and the Biot-Savart induction equation. In the 
case of thin vortices with small curvature, the local induction approximation pro- 
vides a considerable simplification in analysis and gathering intuition regarding the 
instantaneous self and mutual inductions of vortical structures. Two particular ide- 
alizations have found extensive use: filaments and point vortices. Representation of 
vortices by filaments is appropriate under some constraints and has been dealt with 
by many researchers (Leonard 1980; Siggia 1985; Schwarz 1985). For a discussion 
of motions of point vortices see Aref (1982). A generalized point vortex model for 
2D vortex merger has been given by Melander e t  al. (1986,1988). Many interesting 
phenomena have been studied by inviscid vortex dynamics: entanglement (Hopfin- 
ger et al. 1982; Takaki & Hussain 1984), short wave instability (Widnall et al. 1974; 
Saffman 1978), Tkachenko waves (Andreck & Glaberson 1982), for example. 

Viscous vortex interactions can be classified into two categories: augmentation 
and annihilation of circulation. Pairing and entanglement usually produce accu- 
mulation of circulation due to merger of like-signed vortices, although pairing of 
opposite-signed vortices has been observed (Hussain 1983). Annihilation of circu- 
lation, for which viscosity is essential, can occur with and without reconnection. 
Head-on collision of viscous vortex rings (Kambe & Minota 1983) is an example of 
annihilation without reconnection and has been numerically simulated in a com- 
panion study (Stanaway e t  al. 1988). Examples of annihilation with reconnection 
include aircraft trailing vortices (Crow 1970), pinching-off in hairpin tips in bound- 
ary layers (Moin et al. 1986), fusion of two parallel adjacent vortex rings (Oshima & 
Asaka 1977; Kida et al. 1988), two colliding rings at arbitrary orientations (Schat- 
zle 1987), splitting of an elliptic jet into two (Hussain & Husain 1987), collision of 
two antiparallel vortex filaments (Meiron e t  al. 1988), etc. Note that Meiron et al. 
use two zero-circulation vortices-an unnecesary complication not present in our 
study. The studies of a trefoil vortex (Kida & Takaoka 1987) and of two colliding 
orthogonal vortex tubes (Zabusky & Melander 1988) also fall in this general cat- 
egory; the motions in both these cases, however, are extremely complex and not 

I 
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easily understood. 

1.1. Motivation 
The cut-and-connect process, also called cross-linking or reconnection, is of gen- 

eral interest as an example where topology is not preserved. However, there are 
particular motivations for the present study. Following Laufer’s (1974) proposal 
that vortex pairing was the dominant factor in jet noise generation, we argued that 
pairing was an unlikely cause in practical jets, which involve very little pairing, 
and that it was the breakdown of vortical structures which produced most noise in 
jets. We then proposed cross-linking as the specific mechanism involved (Hussain 
1983) and then further proposed it to be responsible for mixing, turbulence produc- 
tion and helicity generation (Hussain 1986). Although we had no measurements (of 
vorticity) to support our claim regarding the role of vortex cut-and-connect, we pre- 
sented an idealized model which not only shed some light on the mechanism but also 
produced far-field jet noise predictions in qualitative agreement with experiments 
(Takaki & Hussain 1985). 

The second motivation for a rigorous study of the cross-linking process is to obtain 
a clear understanding of the role of viscosity. In the absence of viscosity, vortex 
lines are material and thus cannot cut and connect, according to the theorems 
of Kelvin and Helmholtz. It is clear that viscosity is crucial to cross-linking, as 
emphasized in the analysis of Takaki & Hussain (1985). They coined the phrase 
‘cut and connect’ to emphasize the topology-changing nature of the event, although 
the event, a consequence of viscous diffusion, obviously involves no cutting (or 
breaking) whatsoever of vortex lines. There are many who still feel viscous effects 
are irrelevant to cross-linking (Benjamin 1985). For example, Melander & Zabusky 
(1988) suggest that viscous effects are not operative at large Re during several 
convective intervals. 

Different mechanisms of cross-linking are implied in different studies. Siggia & 
Pumir (1985) and Ashurst & Meiron (1987) proposed “tangling and collapse” of vor- 
tices. In their idealized analysis, Takaki & Hussain (1985) transformed the cut-and- 
connect problem into an equivalent problem where cross-linking occurs smoothly 
(but very rapidly) as a viscous diffusion phenomenon. Kida & Takaoka’s (1987) 
simulation suggests that high-vorticity fingers ejected from the main vortices, get 
elongated and then connected with other fingers to form “bridges”. (Note that this 
mechanism, despite the same name, is quite different from the bridging mechanism 
we discuss here). Melander & Zabusky’s (1988) simulation suggests the formation 
of hairpin vortices, which are pulled out from the outer layer fluid of colliding vor- 
tices and then intensified, causing subsequent entanglement. As will be seen here, 
the mechanism we observe and analyze is indeed quite different-it is truly viscous. 
Viscous annihilation is a precondition for our bridging. Kida & Takaoka’s ‘bridging’, 
as Melander & Zabusky’s mechanism, is by mutual induction and does not require 
viscosity for initiation. Their mechanism may occur at high Re,  but whether it will 
occur on an inviscid time scale at high Re is unclear. 

Another aspect that remains unresolved is the characteristic time scale of the 
phenomenon. Takaki & Hussain (1985) emphasized that viscosity was crucial, yet 



260 M. V. Melander and F. Hussain 

its effect was indirect. They claimed that the cut-and-connect happened rapidly in 
a time scale 0 (a2/I'), where u is the instantaneous core size. Based on his data, 
Schatzle (1987) proposed two time scales cr/(ev)1/2 and u2/(I'v)1/2 in terms of strain 
rate e and circulation r. The strain rate is set by r in ways that remain unclear. 
He also quotes a time scale of (1/2e)log(a2e/v) suggested to him by Saffman and 
Leonard. He was unable to indicate a clear preference between these three, as all 
three gave values comparable to those in his experiment. Meiron e t  al. (1988) have 
proposed a time scale of log(I'/v)/2e. Melander & Zabusky (1988) also suggest that 
if there is balance between strain and dissipation, then the time scale - log(I'/v). 

Singularity of the Navier-Stokes equation is another reason why cross-linking is 
particularly interesting. Do solutions of the incompressible Navier-Stokes equation 
(in the limit v ---t 0) blow up in finite time? Recent studies by Siggia (1985) and 
Siggia & Pumir (1985) suggest singularity of the Euler solutions in finite time. 
(Also, Pumir & Siggia (1987) claim that there is a singularity in the Navier-Stokes 
equation at sufficiently high Re). However, their study involving inviscid vortex 
filaments cannot be viewed as conclusive as it is not clear if the solutions obtained 
by vortex filament simulations correspond to solutions of Euler equations near the 
time of singularity, including the fact that their simulations do not consider strong 
core deformation which, as we will see herein, is a crucial factor in cross-linking. 
The singularity issue is not addressed in the present paper but is discussed in a 
concurrent study elsewhere (Kerr & Hussain 1988). 

I 

I 

1.2. Objective 
It is clear from the above brief review that the cross-linking mechanism and the 

time scales involved are far from being understood. The need for modeling the 
event cannot be overemphasized. However, modeling should be based on carefully 
digested observations-not a popular practice! Schatzle (1987) proposed that fur- 
ther careful experiment and numerical simulation were needed. Meiron et  al. (1988) 
also concluded, as we did, that the present state of understanding of cross-linking 
was extremely poor and that further study was warranted. 

Before stating our objective, we must explain why we studied antiparallel vortices 
and why numerically. 

In spite of numerous flow visualization studies of reconnection, especially in rings, 
there is practically no quantitative measurement, except the recent one by Schat- 
zle (1987). Unfortunately, his measurements involve ensemble averaging, assuming 
identical details of the cross-linking process in space and time in successive runs of 
the same event by repeated experiments; in addition to the inherent smoothing in 
such ensemble averaging (along with spatial averaging used by him), his measure- 
ments are limited in resolution and also by the fact that data were taken in one 
plane only. This clearly misses 'bridging' which we claim here to be the essence of 
cross-linking. We need instantaneous data over the 3D field with adequate reso- 
lution. Pending further development in measurement technology (now in progress 
in our laboratory), experimental methods cannot now do much better. However, 
supercomputer simulation can provide time evolution of reconnection in 3D and 
with adequate resolution, especially at low Re. 

I 

i 
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FIGURE 1. Schematic of the initial vortex tubes and coordinates. 

The simulation of Kida & Takaoka (1987) of a trefoil and of Melander & Zabusky 
(1988) of two colliding orthogonal vortex tubes show that the local interaction, 
which involves entanglement and cross-linking, is extremely complex, even virtually 
intractable. However, we know that two vortex filaments of arbitrary orientations 
will tend to become antiparallel by mutual induction as they approach each other. 
This was also apparent in the simulations of Siggia (1985) and Pumir 8z Siggia 
(1987). Thus, one can focus on the details of cross-linking by considering the simple 
case of antiparallel vortex tubes. In order to aid the collision and annihilation, so 
that the two vortex tubes press against each other for sustained annihilation, they 
were given parallel sinusoidal perturbations, the planes of the two cosine waves 
being inclined to each other (figures 1 & 2). 

The objectives of this study were to: 
i) Obtain a clean simulation of two antiparallel vortex tubes with initially circular 

ii) Explain the detailed mechanism of cross-linking by examining the processes of 

iii) Explain the origin and role of bridging. 
iv) Identify the time scale of cross-linking. 
v) Explain the final stage of cross-linking (that is, is reconnection complete or is 

vi) Determine sensitivity of cross-linking to asymmetry. 
vii) Study topology and dynamics of cross-linking by considering the 3D fields 

of properties, including enstrophy production, dissipation, helicity, scalar transport 

cross-sect ion. 

annihilation, motion of dipole and bridging. 

there debris left?). 
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FIGURE 2. (a) Three views of the initial state for symmetric computation; (b) 
initial vorticity distribution within the core; (c) initial configuration for asymmetric 
computation. 
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etc. 

mation, bridging and threading. 
viii) Suggest modeling of the cross-linking: core deformation and head-tail for- 

2. Simulation method 
Our numerical method, used for solving the Navier-Stokes equation in a cube 

with periodic boundary conditions, is a pseudo-spectral (Galerkin) method with a 
fourth-order, predictor-corrector for time stepping. Dealiasing is performed by a 
2/3-spherical truncation in k-space. The choice of periodic boundary conditions is 
justified by the fact that cross-linking is a strong local vortex interaction, which is 
insensitive to weak nonlocal effects. In a different study by Melander & Zabusky 
(1988, and private communication) the influence of adjacent boxes was studied, and 
it was found that the effect is inconsequential. 

The initial conditions consist of two antiparallel vortices with a sinusoidal pertur- 
bation as shown in figure 2. Each vortex (unperturbed) has a circular cross-section 
with an initial vorticity profile given by, 

20 [l - f(r/O.666)] r < 0.666 
r 2 0.666 ' w ( r )  = 

After the perturbation is applied, this defines a vorticity field win which may not be 
divergence free. In order to ensure a divergence-free vorticity field we first calculated 
the curl of the specified initial vorticity field, 

and then find a modified vorticity field w by inverting the following two equations, 

q = v x w ,  v . w = o ,  (3) 

which guarantee divergence-free vorticity field. This inversion makes a slight ad- 
justment in uin without introducing any noticeable vorticity away from the core 
(;.e., r > 0.666). 

The total circulation in the box vanishes due to the symmetry in the initial 
condition. Therefore, there is no need to use vortices whose individual circulations 
vanish, as is the case in the initial conditions used by Meiron et ul. (1988). 

3. Observations 
Figure 1 shows the schematic of the initial vortices along with the coordinates x, y, 

z. For the sake of clear identification let us distinguish the two planes of symmetry: 
we will call the zy-plane the dyrnrnetric plane and yz-plane the dividing plane. 
Figure 2(a) shows three views of the initial configuration of the vortex pair. Note 
that the computational domain contains one full wave with the cross-linking zone 
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at the center of the domain. The two sine waves are inclined to each other at 60" so 
that these two vortices move by self induction along the local binormal (Batchelor 
1967; p. 510) to make contact at the center and that they remain pressed against 
each other as the annihilation continues. The initial inclination angle, the amplitude 
of the sine wave and the core separation were chosen to shorten the time required to 
make contact. The vortex cores of circular cross-section are centered along the sine 
wave. The vorticity distribution (figure 2b) has compact support so that, unlike 
the Gaussian distribution which has tails extending to infinity, there is no vorticity 
outside the core boundary (i.e. r = 0.666). This is somewhat of an artifact, but 
introduced to make the cross-linking process clean, focused at the contact zone, 
and tractable. Without this, vorticity cross-linking would occur everywhere along 
the dividing plane and would cloud the central issue. This initial configuration 
was obtained as the optimum after some iteration. Figure 2(c) shows the initial 
configuration used to determine the effects of asymmetry on the evolution of the 
cross-linking process. Note that this configuration is asymmetric in all directions. 
In this paper all figures will be for the symmetric simulation only. We will merely 
mention the effect of asymmetry. 

The results will be discussed at the times t = 0, 1,2,3,3.75,4.5 and 6 where t is 
time t' nondimensionalized by initial peak vorticity, i.e. t = t' Iwlmar(0)/20. 

Figures 3(a-g) show surfaces of IwI = 0.31wlmsr(0). The corresponding vorticity 
contours in the symmetric (zy) plane are shown in figures 4(a-g). Between the first 
two frames, self-induction brings the two cores closer and they deform from being 
circular. At t = 2 the cores are siginificantly flattened. The two vortices contact 
each other at some time between t = 2 and 3. Note that by t = 3 the formation of 
the characteristic head-tail structure of a vortex dipole is clear. Up to this point the 
vorticity distribution within each is not unlike that in the case of head-on collision 
of circular vortex rings studied by Stanaway et al. (reported herein). Note that the 
two cores move upward by mutual induction. Until this time, the vorticity in the 
dividing (yz) plane is zero, but not now. The vorticity contours in this plane at 
t = 3,3.75,4.5 and 6 are shown in figures 5 (a-d), respectively. 
As will be discussed in the next section, annihilation of vorticity in the symmetric 

(zy) plane is accompanied by appearance of orthogonal vorticity in the dividing (yz) 
plane as a result of cross-linking. The amount of circulation lost by annihilation 
is precisely the amount of circulation appearing in the dividing (yz) plane. So the 

The most dramatic change in the topology happens between t = 3 and 3.75. 
Between these two times significant annihilation has happened. There is also the 
appearance of two humps in figure 3(e) connecting the two vortex tubes across the 
initial contact point. These two, which we call "bridges", are direct consequences 
of annihilation and resulting reconnection, and will be discussed later. 

The circulation I' in one half of the zy plane is shown in figure 6 as a function 
of time. Note that most of the circulation decay by annihilation has already taken 
place by t = 3.75. The same amount of circulation has accumulated in the yz plane 
(figure 5b ). By t = 4.5, 70% of the circulation has been annihilated. Because of 

I amount of circulation annihilated at t = 3 is apparent from that in figure 5(a). 

I 

I 

I 
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FIGURE 3. Wire plots of IwJ surface at 30% of initial peak vorticity. (a) t = 0; (b) 
t = 1; (c) t = 2; (d) t = 3; (e) t = 3.75; (f)  t = 4.5; (g) t = 6. 
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FIGURE 4. Contours of vorticity normal to the symmetric (zy) plane at times cor- 
responding to figures 3(a-g). The grid is four times coarser than the computational 
mesh. The numbers on the right indicate the dipole motion in the y direction. 
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FIGURE 5. 
Aw, = 1; thick lines, Aw, = 4. (a) i = 3; (b) 1 = 3.75; (c) t = 4.5; (d) t = 6. 

Contours of w, in the dividing (yz) plane. Contour spacing: thin lines, 

FIGURE 6. 
plane; (b) Phases and time scales of reconnection. 

(a) Circulation as a function of time in one half of the symmetric (zy) 
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higher vorticity concentration, the annihilation is much more between the heads 
than between the tails. The head moves ahead leaving the tail behind (figures 
3f, 4f ). The 
reconnected vortex configuration at t = 3.75 is such that the bridges move apart by 
self-induction. An interesting point to observe is that the bridges pull apart much 
faster than the rate at which the vortices initially approach each other (compare 
figures 4 and 5) .  This is because the bridges, looking like curved hairpins, have much 
larger curvature and therefore higher self-induction velocities. The two bridges now 
induce a downwash in the contact zone which reverses the direction of motion of 
the vortex dipole. As the two bridges pull apart they stretch the dipole into two 
slender threads. The two threads now undergo annihilation at a slower pace (figure 
6); because of reversal of the curvature of the threads their self-induction is not 
such as to keep them pressed against each other. In fact the two threads now 
move apart (compare figures 4f, 4g), their separation is smallest at the center where 
they are straight and larger near the ends where they are more curved (hence have 
higher self-induction away from each other). The reversal of the curvature of the 
threads and their moving apart would arrest annihilation, but the axial stretching 
of the threads intensifies their vorticity and thus sustains their annihilation by 
cross-diffusion, although at a slower pace. Note that at t = 6,  the threads appear 
pinched off from the bridges. The picture is not totally clear; there appears to be 
complex entanglement of the thread ends around the bridges. The details of the 
entanglement are clearly not captured by the resolution in our simulation. 

The simulation is terminated at t = 6 because beyond this time the vortices in the 
neighboring cubes start affecting the flow. Also, since the threads decay slowly at 
viscous time scales no further significant changes are expected. The two reconnected 
crescent-shaped vortices (essentially halves of vortex rings connecting across the 
boundary, which would evolve little from now on) taper off at the boundary at the 
IwI level plotted, presumably because the vorticity is highly diffuse at the boundary; 
thus there is no vorticity at the level plotted. 

While the threads are slowly decaying, there is a possibility that the thread 
pair may undergo a second-level cut-and-connect. This can happen if a perturba- 
tion reverses the dipole motion in the contact zone. It can also happen without 
a perturbation due to the fact that the middle portion of the threads can reverse 
curvature, once again, by mutual induction. Then self induction will pull the two 
threads closer to each other to enhance annihilation, reconnection and formation 
of "bridglets". Thus, this second cross-linking may constitute a second stage in a 
sequence of cut-and-connect interactions-a fascinating cascade mechanism! 

The cut-and-connect generates orthogonal vorticity. The threading, or even suc- 
cessive cascade of cross-linking, would produce finer scales of vorticity with progres- 
sive increase of vorticity surface and decrease in scale. This may lead to enhanced 
mixing. The progressive fine scale generation would be a new and interesting en- 
strophy cascade mechanism. As we have claimed that cut-and-connect happens 
continually in all turbulent flows, we have here a non-statistical explanation for 
mixing and enstrophy cascade. 

The tail decays more by viscous diffusion than by annihilation. 
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Figure 6(a) suggests three characteristic time scales of the phenomenon. Phase I: 
0 < t < t l ,  where t l  is the approach time during which circulation remains virtually 
constant while vorticity increases sharply. Phase 11: t l  < t < t 2 ,  during which most 
annihilation takes place. Phase 111: t > t 2 ,  the period of decay of threads. These 
three phases can be identified by drawing a straight line tangent to the r(t) curve 
through the point of inflection (figure 6b). The point where this tangent intersects 
the r(0) line defines t l .  The determination of t z ,  however, is not so precise as 
the decay curve slope is not well defined for the duration of the simulation. We 
estimate for this simulation tl M 2.7 and t z  x 4.3. Using these two times, one can 
define the reconnection time as t ,  = t 2  - t l  = 1.6. This value compares favorably 
with Schatzle’s (1987) time scale 0 2 / ( r v ) t  M 1.7, while the time scale a2/r M .05 
proposed by Takaki & Hussain (1985) is too fast. We also note that the viscous 
time scale a2 /v  B 55 is too long. We expect the reconnection time to decrease with 
Re; hence, the Takaki-Hussain time scale may be more appropriate at high Re. 

We also followed the evolution of a passive scalar for the case of unit Schmidt 
number. This scalar was put in one vortex only, and in this vortex the scalar was 
set equal to the vorticity magnitude. At t = 6, we found virtually no scalar in the 
threads and very little in the bridges. Where vorticity is enhanced by stretching, 
markers are depleted; thus visualization may divert our attention away from most 
interesting points in a flow. 

4. Discussion 

4.1. Bridging: the essence of vortez cross-linking 
We claim that bridging is the essence of cross-linking and is a simple consequence 

of vorticity annihilation. That is, all cross-linking must involve bridging. When 
vortices collide in a nonparallel manner other facets of interaction such as entan- 
glement and filamentation may mask bridging, but it is the central mechanism by 
which vorticity cross-linking happens. Here we delineate the mechanism and suggest 
possible modeling of it. 

Consider the two antiparallel vortex tubes (figure 7a) with three vortex lines 
each, emanating from three fluid particles in the main core. Viscous cross-diffusion 
annihilates the innermost vortex lines along the contact zone. This would leave 
the two innermost vortex lines devoid of their central parts, were it not the case 
that the remainder of these vortex lines link-up or connect near each end of the 
contact zone (figure 7b). The pumping (Le. swirl) of the vortex tubes advects this 
reconnected vortex line upward, while simultaneously, vorticity diffusion across the 
tip of the narrow cusp (the reconnection point) makes the tip recede so that the 
tip radius of curvature increases from zero (figure 7c). The advection of the cusp 
is arrested as it approaches the stagnation point in front of the vortex dipole. In 
parallel, the swirl of the tubes stretch the vortex line and further increases the radius 
of curvature at the cusp (figures 7d,e). The continual stretching of the vortex line 
‘straightens out’ the kink as the line is wrapped around the two tubes (figure 7f). 
Where the cusp disappears (;.e., whether the cusp disappears before arrival at the 
stagnation point) depends on the ratio of the advection time to diffusion time, hence 
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1 ’ ZONE 

FIGURE 7. (a-f) schematic of annihilation and reconnection. 

Re. This is how one sees Re entering directly into the discussion and modelling of 
the phenomenon. It should be obvious how successive reconnected vortex lines pile 
up at the stagnation points to form bridges. 
To further understand the bridging mechanism, let us now consider the cross- 

section AB in figures 7(e) and 7(f). Drawn in figure 7(g), this cross-section shows 
the dipole structure of the antiparallel vortex tubes. In a reference frame moving 
with this dipole the streamline patterns have two stagnation points: ST and Sg. It is 
now clear that our reconnected vortex line comes to a rest near the front stagnation 
point ST. This point being a saddle, the vortex line is subject to continued stretching 
along the diverging separatrix a-a. 

This scenario illustrates how reconnected vortex lines appear on the top of the 
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FIGURE 7. (g) streamline pattern in the zy-plane showing stagnation points ST 
and SB; (h) bridging showing self-induced motion of the bridge (straight arrows) 
and velocity induced on the threads (curved arrows). 
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FIGURE 8. Advection and accumulation of reconnected vortex lines forming 
bridges. The streamline pattern of 7(g) is superimposed on the vorticity contours 
(hatched area). Lines 1-1, 2-2, 3-3, 4-4 and 5-5 represent successive positions of a 
vortex line. 

antiparallel vortex tubes and get aligned orthogonally i.e. along a-a. Figure 7g 
also shows that as the reconnected vortex fluid is pumped to ST, the contact zone 

continuously gets supplied with fresh vortex lines starting essentially from near the 
back stagnation point SB. The effect of this mechanism is an accumulation of the 
newly-linked vortex lines at ST along a-a, thereby explaining the ‘humps’ we observe 
on top of the antiparallel vortices in the wire plots (figure 3e). The motion of the 
bridges due to self induction and the flow induced by them are illustrated in figure 

The process is schematically explained in the perspective view of one half of the 
two vortices in figure 8. The figure depicts vortex lines emanating from a fluid 
particle located at points numbered 1-5 at successive instants. 

Figure 9 is a cross-sectional view of the dipole, showing both streamlines (in 
the frame advected with the dipole) and zones of vorticity. The streamlines show 
how fluid marked by annihilated vorticity (hence also the tips of the reconnected 
vortex lines) is advected away from in between the two vortices (dipole) to the 
stagnation point as the connection point recedes by both diffusion and stretching. 

I 

~ 

I (marked by hatches with intensity intended to denote local rate of annihilation) 

I 7 w  

I 
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FIGURE 9. (a-f) Motion in dipole and vorticity field in a plane parellel to the 
zy-plane and passing through the bridges. The configuration (c) results from (b) 
after fusion of the shroud with the eyes. The head-tail structure is shown in (d) 
before the head detaches from the tail in (e), which is the cross-section A-A in (f). 
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The cross-section, as viewed in IwI contours, then takes a shape shown in figure 

shroud containing vorticity orthogonal to that of the two "eyes") undergoes changes 
as the "eyes" are continually depleted due to annihilation and the shroud, which 
represents a bridge, becomes heavier (due to accumulation of newer vortex lines). 
Simultaneously, as a result of viscous diffusion the shroud fuses with the dipole into 
a single structure (figure 9c). 

As the reconnected vortex lines accumulate near ST, so that the bridges acquire 
a circulation comparable to that of the antiparallel vortex tubes, a new phase of 
the evolution begins. The bridges (now looking like curved hairpins) begin to move 
away from each other by self-induction, and also initiate a downwash in the contact 
zone (figure 7h). This downwash soon becomes strong enough to dominate the 
upward motion of the dipole in the symmetry plane. There are two reasons for this; 
first, the circulation in the bridges grows; second, the dipole acquires a head-tail 
structure and only the vorticity in the head is responsible for the upward motion 
(figure 9d). Mutual induction causes the heads to move ahead leaving the tail 
behind to undergo uneventful viscous decay. This is shown in figure 9(e) which 
represents the section A-A in figure 9(f) representing the state at t = 4.5 (figures 
3f, 4f). The downwash causes the curvature of the antiparallel vortices to reverse. 
The antiparallel vortices will therefore no longer be pushed towards each other by 
self-induction; on the contrary, self-induction will now tend to push the vortices 
apart. The primary cause of continued fast annihilation is therefore disappearing. 
This explains why the cut and connect is only partial. The slender threads, which 
are the remnants of the original vortex tubes, disappear on a longer and qualitatively 
different time scale. 

Regarding accumulation of reconnected vortex lines, the vorticity contours in the 
yz plane show interesting features (figures 5a-d). As seen from figure 7, new (recon- 
nected) vortex lines are drawn in the bridges from the contact zone, as the bridges 
continue their swirl. In figure 5b the right hand side bridge moves counterclockwise 
and the left hand side one moves clockwise. As more and more vortexlines are ac- 
cumulated, the bridge core starts to become rounded. The peak vorticity is not at 
the center but toward the side to which the bridges are being advected by mutual 
and self induction. 

I 9(b). The characteristic structure of a head-tail dipole with a top shroud (the 

4.2. Modeling of cross-linking, bridging and threading 
In spite of extensive current interest in the cut-and-connect mechanism, its un- 

derstanding is poor. Less satisfactory is its modeling. We emphasize that one must 
translate observations-numerical and experimental-into an analytical, at least 
conceptual, model. In this section we discuss how the insights that we have ob- 
tained may be used to construct a model for the crucial stage 11, namely, bridging. 
We shall merely provide the conceptual framework of our model and hope to treat 
analysis in the future. We draw upon well-understood and simple vortex situations 
and try to keep the model two-dimensional, at least locally. 

There are four principal ingredients of our qualitative description of the cross- 
linking mechanism in phase 11. These are : (i) self-induction due to curvature, (ii) 
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stretching (by mutual induction) and core deformation, (iii) evolution of two or- 
thogonal vortex dipoles: one in the symmetric plane and the other in the dividing 
plane, and (iv) annihilation of antiparallel vortex lines by cross-diffusion. Of these, 
core deformation and cross-diffusion seem to be most difficult to model accurately. 
Both effects are coupled to the details of the vorticity distribution within the cores: 
diffusion is the strongest in regions of large gradients and core deformations pro- 
duce complicated regions of gradient intensification (Melander e t  al. 1987). We 
concentrate on adequately modeling these two effects, ignoring for the time being 
3D details which we consider less important. In this framework, we limit our consid- 
eration to the two orthogonal planes-the symmetric and dividing planes-hoping 
to use the simple 2D evolution equations in each plane, that are coupled together 
to model 3D effects. The 3D effect is included by incorporating local curvature of 
the vortices. The bridges are nonplanar so that curvature varies continuously in 
direction and magnitude along the vortex. We shall make the assumption, however, 
that curvature is constant along a vortex, although a function of time. 

At the end of phase I (inviscid advection), the two vortex tubes touch each other 
with a contact zone that extends from C1 to C2 as shown in two orthogonal views 
in figures lO(a) and 10(b) and perspective view in lO(c). The cross-linked vortex- 
lines C:C:( and CkCy lying within the bridges have radius of curvature T b  at the 
intersection of the bridges with the dividing plane. Their binormals bc, and bca 
at C1 and C2 are in the dividing (yz) plane, but parallel to neither the z nor y axis. 
In the symmetric plane (figure lob), vortex tubes have a radius of curvature T,  and 
the binormal b, is in the z direction. We assume for modeling purposes that T b ,  T,,  

bc,, bca depend only on time. 

In our simplified model the interaction zone consists of two orthogonal dipoles. 
Let us call the dipole formed by the bridges as the growing dipole and the one 
formed by the initial annihilating vortex tubes as the dying dipole. The treatment 
of the dying dipole is 2D but allows for: i) curvature effects, ii) stretching in the z 
direction (figure lOd), and external velocity field V b  due to the bridges or growing 
dipole (figure 1Oc). The z-dependence of V b  is not strong near 2 = 0. Thus we can 
take the vb field from the yz plane and assume it to be constant across the dying 
dipole. The axial stretching S, = a W b / a %  of the dying dipole can accordingly be 
assumed to be that in the yz plane. To consider the time evolution of the radius 
of curvature r,, we assume that the tubes remain parallel (;.e., they remain pressed 
against each other) and their mutual induction is constant along the length, so that 
the change of curvature is only due to %-variation of V b .  By symmetry a v b / a z  = 0. 
Hence T,  is determined by a 2 V b / a z 2 .  However, since V b  is a function of z and 
y, assuming that we focus our attention on z = 0, we must specify the position 
along the y-axis where 8 2 V b / a Z 2  should be evaluated. The centroid location of 
the decaying dipole is the clear choice. With these approximations we may write 
equations for the dying dipole; these equations depend only on the flow in the 
dividing (yz) plane. 

How do we model the growing dipole? As vorticity is being annihilated (in the 
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FIGURE 10. Modeling of the reconnection, bridging and threading. The cross- 
linking zone is shown is shown in top view (a), side view (b) and perspective view 
(c). The growing dipole is illustrated in (d). The receding of vortex lines during 
annihilation and cross-linking is shown in (e). The curvature of threads and their 
modeling is shown in (f). 
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dying dipole) by cross-diffusion, we immediately feed an equivalent amount of mi- 
crocirculation into the growing dipole i.e. to the bridges. A crucial question is at 
what location should this microcirculation be added in the dividing plane. Since 
vortex lines in the contact zone are nearly antiparallel, we assume an instant anni- 
hilation throughout the entire length of the contact zone. In reality, the process is 
a progressive, though quick, retreat, as shown in figure lO(e). The z-coordinate for 
the addition of microcirculation is thus clear, namely, the end points C1 and Cz of 
the contact zone. At  what y? Let us assume that the dying dipole under the bridges 
is exactly the same as in the symmetric plane (figure 10e) except that it is displaced 
in y by Ay due to curvature (thus Ay is known when the distance between the 
bridges i.e. between C1 and Cz is known). The midpoint of this dipole (i.e. point 
d) denotes the y-location for addition of microcirculation. In other words, the y- 
location for addition of microcirculation equals the y-location for annihilation plus 
Ay. The advection of this microcirculation from d to C1 depends on the strength 
of the dying dipole. Once again, C1 and Cz are the centroids of the bridges in the 
dividing plane. How the binormals bc, and bc2 evolve is not clear to us yet, but 
we believe we have here an outline of a reasonable cross-linking model. 

The model thus gives evolution equations for two 2D problems with initial con- 
ditions given by phase I. The advantage of this model is that we avoid making 
any assumption regarding core deformation and annihilation, which are two most 
crucial parts of the process. The disadvantage is that inaccuracies may result from 
the fact that we have made strong assumptions on the overall 3D structure of the 
process. However, these assumptions are motivated by our observations. 

4.3. Effect of asymmetry 
The simulation with initial asymmetries produced virtually the same pictures of 

vorticity wire plots as in figures 3(a-g). At t = 6 ,  the plot is virtually indistin- 
guishable from that shown in figure 3(g). We conclude that the phenomenon is 
insensitive to small asymmetries as long as the vortices are of equal circulations 
and the analysis (Takaki & Hussain 1985) and high-resolution simulation (Kerr & 
Hussain 1988) involving symmetry are appropriate for studying the phenomenon. 

4.4. Re dependence 
In order to obtain some idea of the dependence on Re,  another simulation for 

Re(= r / v )  = 500 was performed. Plots of IwI are shown in figures ll(a-h). A 
similar evolution is seen as at Re = 1000 except that at t = 6 the reconnection is at 
an earlier stage. Note that the vorticity level in figures 11 (a-e) are those of figure 
3 (Le., 30% of the initial peak value). At this lower Re,  vorticity diffuses more; thus 
a lower vorticity level is required for capturing the details. 

See figures ll(f-h) for vorticity surfaces at the 15% level. We conclude that while 
time is not scaled properly (which is not unexpected) the mechanisms present are 
the same. It is particularly interesting to note that two orthogonal dipoles are clear 
in figures ll(d,e). 

5. Other topological properties 
The 3D direct simulation of the Navier-Stokes equation provides considerable 
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I I I I I 1 I P 

FIGURE 11. 
t =4.5; (h), same as (f) but at t =6. 

(f-g), two views of IwI surface at 15% of initial peak vorticity at 

amount of spatial data unavailable experimentally. These provide the researcher 
valuable information regarding the topology and dynamics of the interacting vor- 
tices. While post-processing and visual examination on graphic stations proves ex- 
tremely illuminating, information gathered visually is typically overwhelming and 
has to be properly synthesized and interpreted. More challenging is the selection 
of appropriate flow fields, the inspection plane or view, property of interest and 
contour levels to optimally capture a time-changing dynamical event in a turbulent 
flow. We did not have adequate time for this phase and thus present here a few 
select examples of topological properties during the reconnection process. 

The approach undertaken here is similar to the ones employed by us for the study 
of coherent structures in turbulent shear flows (See for example Hussain 1980, 1983, 
1986). Of the variety of properties that can be useful in studying the topology 
and dynamics, we limit our attention to scalar intensity c, enstrophy production 
P, = wisijwj,  dissipation We will 
present here only a few examples. The contours of dissipation are shown for the 
symmetry (zy) plane in figure 1'4a-e) for t = 2,3,3.75,4.5 and 6,  and for the 
dividing (yz) plane in figure 12(f-i) for t = 2,3,3.75 and 4.5, respectively. 

In order to focus on specific details, we choose one instant, namely, t = 4.5. 
Figure 13 shows enstrophy production. 

Dissipation and helicity are shown in figures 14 and 15 at 20% and 50% of their 
peaks values. The perception of the details depends considerably on the contour 

= 2vsijsij and helicity density h = uiwi. 
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10 
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7 

FIGURE 12. (a-e), yz-plane at 
t =2,3,3.75,4.5 and 6, respectively; (f-i), zy-plane at t =2,3,3.75, and 4.5, respec- 
tively. The grid is four times coarser than the computational mesh. The numbers 
on the right serve to indicate the y locations. 

Contours of kinetic energy dissipation rate. 
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FIGURE 13. Surface contours of enstrophy production at t = 4.5. Black, negative 
production at 20% of the peak negative value; hatched, positive production at 20% 
of the peak positive value. The magnitude of the positive peak is about twice as 
large as the negative peak. 

level. The correspondence between cross-sectional and projected views (for exam- 
ple, compare 12d and 14) is not obvious. One must examine the entire flow field; 
however, space does not permit comprehensive documentation. Below, we only 
summarize our observations without including additional figures. 

Not surprisingly, enstrophy production occurs mostly in the contact zone and 
threads and somewhat in the bridges but in complicated way. For instance fig- 
ure 13 shows that in the bridges there is both positive and negative production 
corresponding to vorticity stretching and compression, respectively. For most of 
the remaining regions, there is very little production, except that there are large 
regions of low-level negative production. This is because self induction produces 
slight compression and fattening of the vortices (see figure 3). This is consistent 
with the observed accumulation of scalar, as well as progressive fattening of the 
scalar domain, in the same regions. 

Within the dipole, dissipation mostly occurs in a small region containing the 
contact plane (figures 12f-i) but significant dissipation is also present above the 
contact zone around the forward stagnation point. We find the peak to lie near the 
intersection of the two symmetry planes. Since helicity density vanishes in these 
planes by symmetry, the peaks of dissipation and helicity density are mutually 
exclusive. There is significant helicity generation where the threads wrap around 
the bridges (figure 15). The high helicity density in the threads (figure 15b) suggests 
long life-consistent with our observation that the threads decay very slowly. 
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I 
FIXJRE 14. 
le-:el. 

Surface contours of dissipation at t = 4.5. (a) 20% level; (b) 50% 

\ 

FIGURE 15. 
(black) and positive (hatched); (b) 50% levels as in (a). 

Contours of helicity density at t = 4.5. (a), 20% of peak negative 
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FIGURE 16. 
density and dissipation at t = 4.5. 

Comparison between regions of large enstrophy production, helicity 

The possible correspondence between dissipation and helicity has been of partic- 
ular interest in studies of turbulent flow. Hussain (1986) suggested that contrary 
to claims elsewhere (Moffatt 1985; Tsinober & Levich 1983) the domains of helicity 
and dissipation cannot be spatially independent even though the peaks may be. 
The present data are consistent with this view (see figure 16). 

When we compare the scalar field with vorticity (for computation with unit 
Schmidt number) we find that they are rather different. In particular, the bridges 
have no scalar. This can be explained by the fact that vorticity stretching is ac- 
companied by corresponding decrease of specie concentration. We have persistently 
warned against the use of flow visualization for study of coherent structures and 
vorticity field in turbulent or unsteady flow and warned that the difference is not due 
to non-unity Schmidt number alone (Hussain 1980, 1983). The present simulation 
clearly supports our warning. 

6. Concluding remarks 
Vortex interactions involving cross-linking consist of four phases: (0) antiparel- 

lelization, (i) core flattening and stretching, (ii) bridging, and (iii) threading. Since 
the first was observed in various numerical simulations and is consistent with Biot- 
Savart induction, we focused on the latter three phases. The choice of antiparallel 
vortices has eliminated distracting complexities that result in the case of collision 
at arbitrary orientations. The simulation not only has shed considerable light on 
the heretofore unknown details of the mechanism but also helped us provide a con- 
ceptual model. The most significant outcomes of this study are the discovery and 
explanation of the bridging process and the fact that cross-linking is incomplete. 
The formation of long-lived threads clearly play some role in enstrophy cascade and 
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mixing. These threads decay at viscous time scale due to the formation of head-tail 
structure and the reversal, induced by the bridges, of the curvature of the vortex 
dipole. The simulation has also vividly demonstrated that vorticity field can be dif- 
ferent from scalar field even in the case of unity Schmidt number. The phenomenon 
is clearly the same at different Re while the reconnection time is Re dependent. 

This simulation is a first attempt at understanding the reconnection mechanism. 
But more information is needed regarding the details of the topology change and 
Re effect. We need higher Re simulations with finer resolution before finer analy- 
sis can be attempted. Considering inherent limitation of even the supercomputer 
capability, invoking symmetry seems unavoidable. Simulations and analysis invok- 
ing symmetries, which were viewed with skepticism by many researchers, are now 
vindicated. 
As hard as it is, we must obtain detailed 3D experimental data, beyond those 

provided by Schatzle's experiments. It is through a close collaboration between 
experiments and simulation that a clearer understanding and modeling of this phe- 
nomenon will emerge. We are planning such collaborative research involving high- 
resolution simulation and experiments. 

i 
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